Gamma Mixture of Chi-Square Distribution: Properties, Estimation and Simulation

Junar T. Lingo¹, Milburn O. Macalos² Caraga State University, Ampayon, Butuan City, Philippines

Abbreviated abstract: In this paper, we define a Gamma mixture of Chi-Square distribution using Zaman et al. . We derive the r-th raw moment for this distributions in establishing its properties. The estimation of parameters of the Gamma mixture of Chi-Square distribution was presented using the method of moments. Afterward, we simulated a random sample from the Gamma distribution and fit the samples of n = 30 and n = 50 to the Gamma mixture of Chi-Square distribution.

Methods

Obtain the Properties of the Gamma Mixture of Chi-Square Distribution

This can be done by computing the r-th raw moment defined as

$$E(X^r) = \int_{-\infty}^{\infty} f_X(x) dx$$

Construct Gamma Mixture of Chi-Square Distribution

Use the formula

$$f_X(x) = \int_{\Theta} f(x; \theta) g(\theta) d\theta$$

with f as the Gamma distribution and g as the Chi-Square distribution

02

03

Simulate a Random Sample from the Gamma Distribution

The process can be done by using the Statistics[RandomVariable] and Statistics[Sample] command under Statistics package in Maplesoft. We generate a sample of 30 and 50 observations.

04

Fit the Gamma Mixture of Chi-Square Distribution to the Gamma Random Sample

We estimate the parameters of the Gamma Mixture of Chi-Square distribution via method of moments (MOM) and compare the fitting results with Gamma distributions using the sum square error

Results

$$n = 50
\mu = 739
\sigma^{2} = 14909
\beta_{1} = 0.1
\beta_{2} = 2$$

Gamma Mixture of Chi-Square

Gamma

n = 30

SSE = 0.03

n = 50

SSE = 0.01

n = 30

 $\mu = 755$

 $\sigma^2 = 13214$

 $\beta_1 = 0.3$

 $\beta_2 = 3.1$

itlingo@carsu.edu.ph- 3

Fitted Gamma Mxture of Chi-Square Distributions

Conclusions

The Gamma mixture distribution is skewed to the right

The GMCS distribution outscore Gamma distribution in fitting

