BURR X EXPONENTIAL WEIBULL DISTRIBUTION: PROPERTIES AND APPLICATION

A.A.Sanusi,¹ S.I.S.Doguwa,² A.Yahya,² and Y.M.Baraya,² 1. Federal University of Kashere, Gombe State, Nigeria. 2.Ahmadu Bello University Zaria, Kaduna State, Nigeria. **Abbreviated Abstract.** A new distribution called Burr X Exponential Weibul distribution (BXE-W) is developed. The characteristics features contain in this new distribution (BXE-W) aids to boost its flexibility. The respective density and distribution functions of this new distribution (BXE-W) were derived. Simulation study shows that the estimated parameters of BXE-W are consistent as the BIAS and RMSE approach zero. Finally, real data sets were used to validate the results obtained from MLE method. The results show that Burr X Exponential Weibull (BXE-W) distribution best fit the data sets compare to the competitive distributions used in this study. Perhaps, this new distribution may be useful to model positive real life data sets that may possess the characteristics feature of Burr X, Exponential and Weibull distributions.

Introduction and Methodology

Weibull distribution has been extended by various families of distributions as aimed to improve on its flexibility in terms of capturing the non-monotone hazard rate function.Therefore, a new distribution called Burr X Exponential Weibull (BXE-W) distribution is developed with its cdf and pdf defined below:

$$F[x;\theta,\lambda,\phi,\gamma] = \left[1 - \exp\left\{-\left(\exp\{\lambda\left(\exp\{\frac{x}{\gamma}\}^{\phi} - 1\right)\} - 1\right)^{2}\right\}\right]^{\theta}$$
(1)
$$f[x;\theta,\lambda,\beta] = \frac{2\theta\lambda\frac{\phi}{\gamma}\left(\frac{x}{\gamma}\right)^{\phi-1}\exp\{\lambda\left(\exp\{\frac{x}{\gamma}\}^{\phi} - 1\right)\}}{\exp\{-\left\{\frac{x}{\gamma}\}^{\phi}}$$
$$\times \exp\left\{-\left(\exp\{\lambda\left(\exp\{\frac{x}{\gamma}\}^{\phi} - 1\right)\} - 1\right)^{2}\right\}\left(\exp\{\lambda\left(\exp\{\frac{x}{\gamma}\}^{\phi} - 1\right)\} - 1\right)^{2}\right\}\left(\exp\{\lambda\left(\exp\{\frac{x}{\gamma}\}^{\phi} - 1\right)\} - 1\right)$$
$$\times \left[1 - \exp\left\{-\left(\exp\{\lambda\left(\exp\{\frac{x}{\gamma}\}^{\phi} - 1\right)\} - 1\right)^{2}\right\} - 1\right\} + 1\right]^{2}$$

Simulation

From table 1 below, the four Parameters of Burr X Exponential Weibul (BXE-W) Distribution are consistence as mean approaches initial values (0.7, 0.4, 0.6, 0.3); bias and root mean-squared error (RMSE) approach zero

Table: 1: Means, Bias and RMSE for the BXE-W parameter estimates when $\theta = 0.7, \lambda = 0.4, \alpha = 0.6, \varphi = 0.3.$

	MLE						
sample size	Estimated parameters						
n	Evaluators	$P1=\theta$ $P2=\lambda$ $P3=\phi$ $P4=\gamma$					
	MEAN	0.7006 0.3718 0.8001 0.2885					
10	BIAS	0.0006 -0.0282 0.2001 -0.0115					
	RMSE	0.3206 0.1115 0.3739 0.0646					
	MEAN	0.7026 0.3946 0.7205 0.3012					
20	BIAS	0.0026 -0.0054 0.1205 0.0012					
	RMSE	0.2760 0.0833 0.2691 0.0475					
	MEAN	0.7049 0.4046 0.6699 0.3065					
40	BIAS	0.0049 0.0046 0.0699 0.0065					
	RMSE	0.2376 0.0531 0.1994 0.0361					
	MEAN	0.7038 0.4072 0.6542 0.3084					
60	BIAS	0.0038 0.0072 0.0542 0.0084					
	RMSE	0.2050 0.0451 0.1711 0.0310					
	MEAN	0.7094 0.4086 0.6322 0.3077					
100	BIAS	0.0094 0.0086 0.0322 0.0077					
	RMSE	0.1690 0.0346 0.1297 0.0245					
		() () () () () () () () () ()					

3/4

Application to data set

The data sets represents the remission times (in months) of a random sample of 128 bladder cancer patients previously used by Lee and Wang (2003). The result from the data set is in the table 2 below; thus, the distribution with the lowest Log Likelihood (LL) and Akaike Information Criteria (AIC) values is Burr X Exponential - Weibull (BXE-W) distribution compares to other competitive distributions such as Topp Leone Exponential Weibull (TLE-W), Transmuted Weibull (TW), Weibull (W), Burr X Exponential Lomax (BXE-L) and Exponentiated Generalized Weibull (ET-GW). Therefore, BXE-W best fits the data sets

Models	θ	σ	λ	ϕ	γ	α	LL	AIC	R
BXE-W	6.4605	-	0.4750	0.0929	2.8168	-	410.754	829.508	1
TLE-W	-	7.6289	0.6112	0.2638	0.4381	-	410.933	829.8660	2
TW	-	1.1337	-	14.6183	0.7440	-	411.9584	829.9168	3
W	-	-	-	1.0477	9.5613	-	414.0869	832.1738	4
BXE-L	0.4978	-	12.9334	-	0.0295	3.2198	424.2681	856.5362	5
ET-GW	-	1.0537	1.3702	0.2765	0.4993	-	540.2794	1088.559	6

Table: 5a: ML Estimates on Data set 1

4/4