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Abbreviated abstract: The intricate nature of rainfall has been appreciated for decades. This paper is

based on state space approach using dynamic linear models (DLM) that provide an adequate model

capable of modeling annual rainfall over Katsina, Nigeria from 1949 to 2019. The method allows a

natural interpretation of data as the combination of trend, seasonal and regressive components. The

validated DLM Model was used for one-step-ahead forecast. Comparison of the observed and predicted

series shows the model closely simulate the actual data values.
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Introduction
• The intricate nature of rainfall has been appreciated for decades. It has being viewed as foremost

examples of highly non-linear systems and apprehended as complex systems. In recent years the

phenomena of rainfall is not steady.

• Even though, numerous time series models were used in modelling rainfall e.g. (Anthony & Clement

2018; Aieb, et.al., 2020), this paper introduce a different State Space Approach that is powerful

however, abandoned; State Space Dynamic Linear model (SSDLM), this method can be applied to

non static data without need for a preliminary transformation. It allows natural interpretation of data

as combination of trend, seasonal and regressive components. It allows extrapolations to be carried

out exactly using Kalman filtering.

• The model is to annual rainfall data from from 1949 to 2019 of Katsina metropolis being in a

Tropical Continental region situated in North West zone of Nigeria.

• DLMs are a large class of models that, among other features, allow for time-varying parameters.

Thus, they do not need to assume a constant functional relationship between covariates, its embed

the temporal dependence within the functional relationship and alleviate the need for numerous lags

of a covariate to account for the temporal nature of the data thereby producing cleaner parameter

interpretation (Osthus et al., 2014).
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Methods
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Consider the annual rainfall data 𝑌𝑡. It is assume that the series can be written as

the sum of independent components such as:

𝑌𝑡 = 𝑌1,𝑡 + ⋯ +, 𝑌𝑗,𝑡 (1)

where 𝑌1,𝑡 represent a trend component, 𝑌2,𝑡 a seasonal component, and so on.

The 𝑖 − 𝑡ℎ component in 𝑌𝑖,𝑡, 𝑖 = 1, . . . , 𝑗, might be described by a DLM as follows

:

𝑌𝑖,𝑡 = 𝐹𝑖,𝑡𝜃𝑖,𝑡 + 𝑣𝑖,𝑡 𝑣𝑖,𝑡 ~ 𝑁(0, 𝑉𝑖,𝑡) (2)

𝜃𝑡 = 𝐺𝑖,𝑡𝜃𝑖,𝑡−1 + 𝑤𝑖,𝑡 𝑤𝑖,𝑡 ~ 𝑁(0, 𝑊𝑖,𝑡) (3)

where the (𝑝1 × 1) state vectors 𝜃𝑖,𝑡 are distinct and (𝑌𝑖,𝑡, 𝜃𝑖,𝑡) and (𝑌𝑗,𝑡, 𝜃𝑗,𝑡) are

mutually independent for all 𝑖 ≠ 𝑗. The components of DLM’s are then combined for

obtaining the DLM for (𝑌𝑡). By the assumption of independence of the components, it

is easy to show that 𝑌𝑡 =  𝑖=1
ℎ 𝑌𝑖,𝑡 described by the DLM as;

𝑌𝑡 = 𝐹𝑡𝜃𝑡 + 𝑣𝑡, 𝑣𝑡 ~ 𝑁(0, 𝑉𝑡) (4)

𝜃𝑡 = 𝐺𝑡𝜃𝑡−1 + 𝑤𝑡, 𝑤𝑡 ~ 𝑁(0, 𝑊𝑡) (5)

where 𝐺𝑡 and 𝐹𝑡 are known matrices (the evolution matrix which pre-multiplies the

previous period’s state vector and the 𝑣𝑡 and 𝑤𝑡 are two independent white noise

sequences with mean zero and known covariance matrices 𝑉𝑡 and 𝑊𝑡 respectively. In

order to specify a DLM, the parameters; 𝐺𝑡, 𝐹𝑡, 𝑉𝑡 and 𝑊𝑡 must be specified for each

period t (Petris, 2010). The filtering distribution of 𝜃𝑡 is the distribution of

𝜃𝑡/𝑦1, 𝑦2 , … , 𝑦𝑡, while the smoothing distribution of 𝜃𝑡 at time s is the conditional

distribution of 𝜃𝑡/ 𝑦1, 𝑦2 , … , 𝑦𝑠, for s ≥ t., under the assumptions that the distributions

are Gaussian, therefore completely determine by their means and variances.

The Kalman filter algorithm follows:

𝛼𝑡 = 𝑐𝑡 + 𝑇𝑡𝛼𝑡−1 + 𝑅𝑡𝜂𝑡 (6)

𝑦𝑡 = 𝑑𝑡 + 𝑍𝑡𝛼𝑡 + 𝜀𝑡 (7)

where 𝜂𝑡~𝑁(0,𝑄𝑡) and 𝑅𝑡~𝑁(0, 𝐻𝑡). The repeated reference is made in the outcome:

𝛼𝑡−1 = 𝐸 𝛼𝑡−1 𝑦0, … , 𝑦𝑡−1 (8)

𝑃𝑡−1 = 𝐸 (𝛼𝑡−1 − 𝑎𝑡−1)(𝛼𝑡−1 − 𝑎𝑡−1)𝑇 (9)

The estimates of the state vector and its covariance matrix at time t with

information available at time 𝑡 − 1, 𝑎𝑡 𝑡−1 and 𝑃𝑡 𝑡−1 respectively, are given by the

time update equations:

𝑎𝑡 𝑡−1 = 𝑇𝑡𝑎𝑡−1 + 𝑐𝑡 (10)

𝑃𝑡 𝑡−1 = 𝑇𝑡𝑃𝑡−1𝑇𝑡
𝑇 + 𝑅𝑡𝑄𝑡𝑅𝑡

𝑇 (11)

Let 𝐹𝑡 = 𝑍𝑡𝑃𝑡 𝑡−1𝑍𝑡
𝑇 + 𝐻𝑡. If a new observation is available at time 𝑡, then 𝑎𝑡 𝑡−1

and 𝑃𝑡 𝑡−1 can be updated with the measurement update equations:

𝑎𝑡 = 𝑎𝑡 𝑡−1 + 𝑃𝑡 𝑡−1𝑍𝑡
𝑇𝐹𝑡

−1(𝑦𝑡 − 𝑍𝑡𝑎𝑡 𝑡−1 − 𝑑𝑡) (12)

𝑃𝑡 = 𝑃𝑡 𝑡−1 − 𝑃𝑡 𝑡−1𝑍𝑡𝐹𝑡
−1𝑍𝑡

𝑇𝑃𝑡 𝑡−1 (13)

For convenience the DLM ‘s can be written by the joint density of the

observations in the form:

𝑝 𝑦1, … . , 𝑦𝑛; 𝜓 =  𝑡=1
𝑛 𝑝(𝑦𝑡 𝐷𝑡−1; 𝜓) (14)

where 𝑝(𝑦𝑡 𝐷𝑡−1; 𝜓) is the conditional density of 𝑦𝑡 given the data up to time t-

1, assuming that 𝜓 is the value of the unknown parameter. Therefore the

likelihood equation can be written as;

𝓁 𝜓 = −
1

2
 𝑡=1

𝑛 𝑙𝑜𝑔 𝑄𝑡 −
1

2
 𝑡=1

𝑛 𝑦𝑡 − 𝑓𝑡 ′𝑄𝑡
−1 𝑦𝑡 − 𝑓𝑡 (15)

where the 𝑓𝑡and the 𝑄𝑡 depend implicitly on 𝜓. The expression (15) can be

numerically maximized to obtain the maximum likelihood estimator (MLE) of 𝜓:

 𝜓 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝓁 𝜓 (16)
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Table 1 Annual Rainfall DLM Parameters

The parameters M0 and C0 are mean and the

variance of the prior distribution respectively,

FF is the covariates, V is observational variance,

GG is evolution and W is the evolution variance.

The behavior of the process is greatly influenced

by the signal-to-noise ratio 𝑟 the ratio between

the two error variances. The smaller the r –

value the nearer estimation point can be

obtained. The estimation and forecasting point

obtained recursively by Kalman Filter. Based on

the parameters in table 1, the annual Katsina

rainfall forecasting model is given by;

𝑌𝑡 = 𝜇𝑡 + 𝑣𝑡;      𝑣𝑡~𝑁(0, 1.6514 × 104)
where 𝜇𝑡 = 𝜇𝑡−1 + 𝑤𝑡 ; 𝑤𝑡~𝑁(0, 4.488 × 103)
with the Prior distribution,

𝜇0 𝐷0 ~𝑁(0, 1 × 107).

Figure 2 one-step ahead forecast plot

Being it a flexible model, it fairly repeats the

data behaviour over time with a considerably

little variation. The adequacy of the model
was realized via its residual,

CONCLUSION

Figure 1

M0 C0 FF V GG W 𝒓 = 𝑾/𝑽

0 1.0 x107 1.0 1.6514 × 104 1.0 4.488 × 103 0.271

the qq-plot that compare the observed series and the

forecasted through plotting their quartiles against each other

shows almost straight line which is an indication of

similarity in the distributions of observed and the

forecasted.

These is indication among others of goodness of fit

and the adequacy of the model. The fitted model was used

for one-step ahead forecast which the forecast plot shows

the forecasted values as true representation of the

observed data. Therefore, the model is a notable

representation of the annual rainfall data.


