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Abbreviated abstract: Historically, mining industry has adopted Mathews and Potvin’s Stability
Graph as a means to evaluate stope stability. However, due to the excessive simplification, the graph
is unable to grasp the nature of the problem adequately, with statistical procedures becoming
favored in the last few years as an alternative. This work proposes the application of different
supervised learning models to predict stope stability, showing that the models can be reasonably
used even when dealing with imbalanced datasets.
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History of the Problem
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Mathews et al. (1980) and Potvin (1988);

» Issues: excessive simplification of the

phenomenon;
* Notable Works: Germain and Hadjigeorgiou
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(1997); Henning and Mitri (2007); Papaioanou

and Suorineni (2015); Qi et al. (2018).
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Materials and Methods

Data Pre-Processing H

Exploratory Data H Hyperparameter H Training/Test Fold

Analysis Tuning Division

Dataset
* 340 observations
O IR=15.2
Predictors
J RQD;
. Hydraulic radius
. Depth;
. Stope direction;
. Stope dip;
. Stope undercut width;
. Stability factors (factor
A, factor B, factor C);

Response
. Stope stability (binary);

Data Scaling and
Model Training

Y

Model Testing and Model Comparison
Performance Metrics | |and Result Evaluation

A

Models

*  Logistic regression;

*  K-nearest neighbors;
. Discriminant Analysis;
 SVM;

. Decision Trees;

*  Random Forests;

Rebalancing Algorithm

. SMOTE;
. 0.1<IR1c1;
Hyperparameter Tuning

. GridSearch
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and Training

Training Data Scaling

z-score;

Validation Strategy

K-fold Cross Validation
with five folds;

Evaluation Metrics

3

Recall;
Precision;
F1-Score;
AUC;
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Results and Conclusions
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Results and Conclusions
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